Insect gas exchange patterns: a phylogenetic perspective.

نویسندگان

  • Elrike Marais
  • C Jaco Klok
  • John S Terblanche
  • Steven L Chown
چکیده

Most investigations of insect gas exchange patterns and the hypotheses proposed to account for their evolution have been based either on small-scale, manipulative experiments, or comparisons of a few closely related species. Despite their potential utility, no explicit, phylogeny-based, broad-scale comparative studies of the evolution of gas exchange in insects have been undertaken. This may be due partly to the preponderance of information for the endopterygotes, and its scarcity for the apterygotes and exopterygotes. Here we undertake such a broad-scale study. Information on gas exchange patterns for the large majority of insects examined to date (eight orders, 99 species) is compiled, and new information on 19 exemplar species from a further ten orders, not previously represented in the literature (Archaeognatha, Zygentoma, Ephemeroptera, Odonata, Mantodea, Mantophasmatodea, Phasmatodea, Dermaptera, Neuroptera, Trichoptera), is provided. These data are then used in a formal, phylogeny-based parsimony analysis of the evolution of gas exchange patterns at the order level. Cyclic gas exchange is likely to be the ancestral gas exchange pattern at rest (recognizing that active individuals typically show continuous gas exchange), and discontinuous gas exchange probably originated independently a minimum of five times in the Insecta.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous gas exchange in insects.

Insect respiratory physiology has been studied for many years, and interest in this area of insect biology has become revitalized recently for a number of reasons. Technical advances have greatly improved the precision, accuracy and ease with which gas exchange can be measured in insects. This has made it possible to go beyond classic models such as lepidopteran pupae and examine a far greater ...

متن کامل

Scaling of gas exchange cycle frequency in insects.

Previously, it has been suggested that insect gas exchange cycle frequency (fC) is mass independent, making insects different from most other animals where periods typically scale as mass-0.25. However, the claim for insects is based on studies of only a few closely related taxa encompassing a relatively small size range. Moreover, it is not known whether the type of gas exchange pattern (disco...

متن کامل

Oxygen-limited thermal tolerance is seen in a plastron-breathing insect and can be induced in a bimodal gas exchanger

Thermal tolerance has been hypothesized to result from a mismatch between oxygen supply and demand. However, the generality of this hypothesis has been challenged by studies on various animal groups, including air-breathing adult insects. Recently, comparisons across taxa have suggested that differences in gas exchange mechanisms could reconcile the discrepancies found in previous studies. Here...

متن کامل

plastron breathing insect , and can be induced in a bimodal gas exchanger

Thermal tolerance has been hypothesized to result from a mismatch between oxygen supply and demand. However, the generality of this hypothesis has been challenged by studies on various animal groups, including air-breathing adult insects. Recently, comparisons across taxa have suggested that differences in gas exchange mechanism could reconcile the discrepancies found in previous studies. Here ...

متن کامل

Temperature-dependent variation in gas exchange patterns and spiracular control in Rhodnius prolixus.

Insects display an array of respiratory behaviors, including the use of discontinuous gas exchange. This pattern is characterized by periods of spiracular closure, micro-openings (flutter), and complete openings during which the majority of gas exchange takes place. A current model of insect spiracular control suggests that spiracles are controlled by two interacting feedback loops, which produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 208 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2005